msecalc {LMGene} | R Documentation |
MSE calculation function
Description
Computes the mean square error and gradient for the global anovaUsage
msecalc(eS, lam, alpha, lowessnorm, R)
Arguments
eS |
Array data. must be exprSet type. |
lam |
A parameter for glog transformation |
alpha |
A parameter for glog transformation |
lowessnorm |
TRUE, if lowess method is going to be used |
R |
The residual matrix, i.e., identity minus the hat matrix |
Details
The input argument, eS, must be exprSet type from Biobase package. If you have a matrix data and information about the considered factors, then you can useneweS
to conver the data into exprSet.
Please see neweS
in more detail.
Value
msev |
A vector which contains MSE and gradient of two parameters |
Author(s)
David Rocke and Geun-Cheol LeeReferences
B. Durbin and D.M. Rocke, (2003) Estimation of Transformation Parameters for Microarray Data, Bioinformatics, 19, 1360-1367.http://www.idav.ucdavis.edu/~dmrocke/
See Also
jggrad2
, tranest2
Examples
#library library(Biobase) library(LMGene) #data data(sample.eS) lmod <- GetLMObj(sample.eS) X <- lmod$x U <- svd(X)$u H = crossprod(t(U), t(U)) n = dim(H)[1] R = diag(rep(1,n)) - H msecalc(sample.eS,500,50, FALSE, R)
[Package LMGene version 1.6.0 Index]