msecalc {LMGene} | R Documentation |
MSE calculation function
Description
Computes the mean square error and gradient for the global anova
Usage
msecalc(eS, lam, alpha, lowessnorm, R)
Arguments
eS |
Array data. must be exprSet type. |
lam |
A parameter for glog transformation |
alpha |
A parameter for glog transformation |
lowessnorm |
TRUE, if lowess method is going to be used |
R |
The residual matrix, i.e., identity minus the hat matrix |
Details
The input argument, eS, must be exprSet type from Biobase package.
If you have a matrix data and information about the considered factors,
then you can use
neweS
to conver the data into exprSet.
Please see
neweS
in more detail.
Value
msev |
A vector which contains MSE and gradient of two parameters |
Author(s)
David Rocke and Geun-Cheol Lee
References
B. Durbin and D.M. Rocke, (2003) Estimation of Transformation Parameters for Microarray Data, Bioinformatics, 19, 1360-1367.
http://www.idav.ucdavis.edu/~dmrocke/
See Also
jggrad2
,
tranest2
Examples
#library
library(Biobase)
library(LMGene)
#data
data(sample.eS)
lmod <- GetLMObj(sample.eS)
X <- lmod$x
U <- svd(X)$u
H = crossprod(t(U), t(U))
n = dim(H)[1]
R = diag(rep(1,n)) - H
msecalc(sample.eS,500,50, FALSE, R)
[Package
LMGene version 1.6.0
Index]
No comments:
Post a Comment
Thank you