% Quadratic programming solver using a null-space active-set method.
%
% [x, obj, lambda, info] = qpng (H, q, A, b, ctype, lb, ub, x0)
%
% Solve the general quadratic program
%
% min 0.5 x'*H*x + q'*x
% x
%
% subject to
% A*x [ "=" | "<=" | ">=" ] b
% lb <= x <= ub
%
% and given x0 as initial guess.
%
% ctype = An array of characters containing the sense of each constraint in the
% constraint matrix. Each element of the array may be one of the
% following values
% 'U' Variable with upper bound ( A(i,:)*x <= b(i) ).
% 'E' Fixed Variable ( A(i,:)*x = b(i) ).
% 'L' Variable with lower bound ( A(i,:)*x >= b(i) ).
%
% status = an integer indicating the status of the solution, as follows:
% 0 The problem is infeasible.
% 1 The problem is feasible and convex. Global solution found.
% 2 Max number of iterations reached no feasible solution found.
% 3 Max number of iterations reached but a feasible solution found.
%
% If only 4 arguments are provided the following QP problem is solved:
%
% min_x .5 x'*H*x+x'*q s.t. A*x <= b
%
% Any bound (ctype, lb, ub, x0) may be set to the empty matrix []
% if not present. If the initial guess is feasible the algorithm is faster.
%
% See also: glpk.
%
% Copyright 2006-2007 Nicolo Giorgetti.
% This file is part of GLPKMEX.
%
% GLPKMEX is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% GLPKMEX is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with GLPKMEX; see the file COPYING. If not, write to the Free
% Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA.
function varargout = qpng (varargin)
% Inputs
H=[];
q=[];
A=[];
b=[];
lb=[];
ub=[];
x0=[];
ctype=[];
% Outputs
x=[];
obj=[];
lambda=[];
info=[];
if nargin < 1
disp('Quadratic programming solver using null-space active set method.');
disp('(C) 2006-2007, Nicolo Giorgetti. Version 1.0');
disp(' ');
disp('Syntax: [x, obj, lambda, info] = qpng (H, q, A, b, ctype, lb, ub, x0)');
return;
end
if nargin<4 br="br"> error('At least 4 argument are necessary');
else
H=varargin{1};
q=varargin{2};
A=varargin{3};
b=varargin{4};
end
if nargin>=5
ctype=varargin{5};
end
if nargin>=7
lb=varargin{6};
ub=varargin{7};
end
if nargin>=8
x0=varargin{8};
end
if nargin>8
warning('qpng: Arguments more the 8th are omitted');
end
% Checking the quadratic penalty
[n,m] = size(H);
if n ~= m
error('qpng: Quadratic penalty matrix not square');
end
if H ~= H'
warning('qpng: Quadratic penalty matrix not symmetric');
H = (H + H')/2;
end
% Linear penalty.
if isempty(q)
q=zeros(n,1);
else
if length(q) ~= n
error('qpng: The linear term has incorrect length');
end
end
% Constraint matrices
if (isempty(A) || isempty(b))
error('qpng: Constraint matrices cannot be empty');
end
[nn, n1] = size(A);
if n1 ~= n
error('qpng: Constraint matrix has incorrect column dimension');
end
if length (b) ~= nn
error ('qpng: Equality constraint matrix and vector have inconsistent dimension');
end
Aeq=[];
beq=[];
Ain=[];
bin=[];
if nargin <= 4
Ain=A;
bin=b;
end
if ~isempty(ctype)
if length(ctype) ~= nn
tmp=sprintf('qpng: ctype must be a char valued vector of length %d', nn);
error(tmp);
end
indE=find(ctype=='E');
Aeq=A(indE,:);
beq=b(indE,:);
indU=find(ctype=='U');
Ain=A(indU,:);
bin=b(indU,:);
indL=find(ctype=='L');
Ain=[Ain; -A(indL,:)];
bin=[bin; -b(indL,:)];
end
if ~isempty(lb)
if length(lb) ~= n
error('qpng: Lower bound has incorrect length');
else
Ain = [Ain; -eye(n)];
bin = [bin; -lb];
end
end
if ~isempty(ub)
if length(ub) ~= n
error('qpng: Upper bound has incorrect length');
else
Ain = [Ain; eye(n)];
bin = [bin; ub];
end
end
% Discard inequality constraints that have -Inf bounds since those
% will never be active.
idx = isinf(bin) & (bin > 0);
bin(idx) = [];
Ain(idx,:) = [];
% Now we should have the following QP:
%
% min_x 0.5*x'*H*x + q'*x
% s.t. A*x = b
% Ain*x <= bin
% Checking the initial guess (if empty it is resized to the
% right dimension and filled with 0)
if isempty(x0)
x0 = zeros(n, 1);
elseif length(x0) ~= n
error('qpng: The initial guess has incorrect length');
end
% Check if the initial guess is feasible.
rtol = sqrt (eps);
n_eq=size(Aeq,1);
n_in=size(Ain,1);
eq_infeasible=0;
in_infeasible=0;
if n_eq>0
eq_infeasible = (norm(Aeq*x0-beq) > rtol*(1+norm(beq)));
end
if n_in>0
in_infeasible = any(Ain*x0-bin > 0);
end
status = 1;
% if (eq_infeasible | in_infeasible)
% % The initial guess is not feasible. Find one by solving an LP problem.
% % This function has to be improved by moving in the null space.
% Atmp=[Aeq; Ain];
% btmp=[beq; bin];
% ctmp=zeros(size(Atmp,2),1);
% ctype=char(['S'*ones(1,n_eq), 'U'*ones(1,n_in)]');
% [P, dummy, stat] = glpk (ctmp, Atmp, btmp, [], [], ctype);
%
% if (stat == 180 | stat == 181 | stat == 151)
% x0=P;
% else
% % The problem is infeasible
% status = 0;
% end
%
% end
if (eq_infeasible | in_infeasible)
% The initial guess is not feasible.
% First define xbar that is feasible with respect to the equality
% constraints.
if (eq_infeasible)
if (rank(Aeq) < n_eq)
error('qpng: Equality constraint matrix must be full row rank')
end
xbar = pinv(Aeq) * beq;
else
xbar = x0;
end
% Check if xbar is feasible with respect to the inequality
% constraints also.
if (n_in > 0)
res = Ain * xbar - bin;
if any(res > 0)
% xbar is not feasible with respect to the inequality
% constraints. Compute a step in the null space of the
% equality constraints, by solving a QP. If the slack is
% small, we have a feasible initial guess. Otherwise, the
% problem is infeasible.
if (n_eq > 0)
Z = null(Aeq);
if (isempty(Z))
% The problem is infeasible because A is square and full
% rank, but xbar is not feasible.
info = 0;
end
end
if info
% Solve an LP with additional slack variables to find
% a feasible starting point.
gamma = eye(n_in);
if (n_eq > 0)
Atmp = [Ain*Z, gamma];
btmp = -res;
else
Atmp = [Ain, gamma];
btmp = bin;
end
ctmp = [zeros(n-n_eq, 1); ones(n_in, 1)];
lb = [-Inf*ones(n-n_eq,1); zeros(n_in,1)];
ub = [];
ctype = repmat ('L', n_in, 1);
[P, dummy, status] = glpk (ctmp, Atmp, btmp, lb, ub, ctype);
if ((status == 180 | status == 181 | status == 151) & all (abs (P(n-n_eq+1:end)) < rtol * (1 + norm (btmp))))
% We found a feasible starting point
if (n_eq > 0)
x0 = xbar + Z*P(1:n-n_eq);
else
x0 = P(1:n);
end
else
% The problem is infeasible
info = 0;
end
end
else
% xbar is feasible. We use it a starting point.
x0 = xbar;
end
else
% xbar is feasible. We use it a starting point.
x0 = xbar;
end
end
if status
% The initial (or computed) guess is feasible.
% We call the solver.
t=cputime;
[x, lambda, iter, status]=qpsolng(H, q, Aeq, beq, Ain, bin, x0);
time=cputime-t;
else
iter = 0;
x = x0;
lambda = [];
time=0;
end
varargout{1}= x;
varargout{2}= 0.5 * x' * H * x + q' * x; %obj
varargout{3}= lambda;
info=struct('status', status, 'solveiter', iter, 'time', time);
varargout{4}=info;
4>
%
% [x, obj, lambda, info] = qpng (H, q, A, b, ctype, lb, ub, x0)
%
% Solve the general quadratic program
%
% min 0.5 x'*H*x + q'*x
% x
%
% subject to
% A*x [ "=" | "<=" | ">=" ] b
% lb <= x <= ub
%
% and given x0 as initial guess.
%
% ctype = An array of characters containing the sense of each constraint in the
% constraint matrix. Each element of the array may be one of the
% following values
% 'U' Variable with upper bound ( A(i,:)*x <= b(i) ).
% 'E' Fixed Variable ( A(i,:)*x = b(i) ).
% 'L' Variable with lower bound ( A(i,:)*x >= b(i) ).
%
% status = an integer indicating the status of the solution, as follows:
% 0 The problem is infeasible.
% 1 The problem is feasible and convex. Global solution found.
% 2 Max number of iterations reached no feasible solution found.
% 3 Max number of iterations reached but a feasible solution found.
%
% If only 4 arguments are provided the following QP problem is solved:
%
% min_x .5 x'*H*x+x'*q s.t. A*x <= b
%
% Any bound (ctype, lb, ub, x0) may be set to the empty matrix []
% if not present. If the initial guess is feasible the algorithm is faster.
%
% See also: glpk.
%
% Copyright 2006-2007 Nicolo Giorgetti.
% This file is part of GLPKMEX.
%
% GLPKMEX is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% GLPKMEX is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with GLPKMEX; see the file COPYING. If not, write to the Free
% Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA.
function varargout = qpng (varargin)
% Inputs
H=[];
q=[];
A=[];
b=[];
lb=[];
ub=[];
x0=[];
ctype=[];
% Outputs
x=[];
obj=[];
lambda=[];
info=[];
if nargin < 1
disp('Quadratic programming solver using null-space active set method.');
disp('(C) 2006-2007, Nicolo Giorgetti. Version 1.0');
disp(' ');
disp('Syntax: [x, obj, lambda, info] = qpng (H, q, A, b, ctype, lb, ub, x0)');
return;
end
if nargin<4 br="br"> error('At least 4 argument are necessary');
else
H=varargin{1};
q=varargin{2};
A=varargin{3};
b=varargin{4};
end
if nargin>=5
ctype=varargin{5};
end
if nargin>=7
lb=varargin{6};
ub=varargin{7};
end
if nargin>=8
x0=varargin{8};
end
if nargin>8
warning('qpng: Arguments more the 8th are omitted');
end
% Checking the quadratic penalty
[n,m] = size(H);
if n ~= m
error('qpng: Quadratic penalty matrix not square');
end
if H ~= H'
warning('qpng: Quadratic penalty matrix not symmetric');
H = (H + H')/2;
end
% Linear penalty.
if isempty(q)
q=zeros(n,1);
else
if length(q) ~= n
error('qpng: The linear term has incorrect length');
end
end
% Constraint matrices
if (isempty(A) || isempty(b))
error('qpng: Constraint matrices cannot be empty');
end
[nn, n1] = size(A);
if n1 ~= n
error('qpng: Constraint matrix has incorrect column dimension');
end
if length (b) ~= nn
error ('qpng: Equality constraint matrix and vector have inconsistent dimension');
end
Aeq=[];
beq=[];
Ain=[];
bin=[];
if nargin <= 4
Ain=A;
bin=b;
end
if ~isempty(ctype)
if length(ctype) ~= nn
tmp=sprintf('qpng: ctype must be a char valued vector of length %d', nn);
error(tmp);
end
indE=find(ctype=='E');
Aeq=A(indE,:);
beq=b(indE,:);
indU=find(ctype=='U');
Ain=A(indU,:);
bin=b(indU,:);
indL=find(ctype=='L');
Ain=[Ain; -A(indL,:)];
bin=[bin; -b(indL,:)];
end
if ~isempty(lb)
if length(lb) ~= n
error('qpng: Lower bound has incorrect length');
else
Ain = [Ain; -eye(n)];
bin = [bin; -lb];
end
end
if ~isempty(ub)
if length(ub) ~= n
error('qpng: Upper bound has incorrect length');
else
Ain = [Ain; eye(n)];
bin = [bin; ub];
end
end
% Discard inequality constraints that have -Inf bounds since those
% will never be active.
idx = isinf(bin) & (bin > 0);
bin(idx) = [];
Ain(idx,:) = [];
% Now we should have the following QP:
%
% min_x 0.5*x'*H*x + q'*x
% s.t. A*x = b
% Ain*x <= bin
% Checking the initial guess (if empty it is resized to the
% right dimension and filled with 0)
if isempty(x0)
x0 = zeros(n, 1);
elseif length(x0) ~= n
error('qpng: The initial guess has incorrect length');
end
% Check if the initial guess is feasible.
rtol = sqrt (eps);
n_eq=size(Aeq,1);
n_in=size(Ain,1);
eq_infeasible=0;
in_infeasible=0;
if n_eq>0
eq_infeasible = (norm(Aeq*x0-beq) > rtol*(1+norm(beq)));
end
if n_in>0
in_infeasible = any(Ain*x0-bin > 0);
end
status = 1;
% if (eq_infeasible | in_infeasible)
% % The initial guess is not feasible. Find one by solving an LP problem.
% % This function has to be improved by moving in the null space.
% Atmp=[Aeq; Ain];
% btmp=[beq; bin];
% ctmp=zeros(size(Atmp,2),1);
% ctype=char(['S'*ones(1,n_eq), 'U'*ones(1,n_in)]');
% [P, dummy, stat] = glpk (ctmp, Atmp, btmp, [], [], ctype);
%
% if (stat == 180 | stat == 181 | stat == 151)
% x0=P;
% else
% % The problem is infeasible
% status = 0;
% end
%
% end
if (eq_infeasible | in_infeasible)
% The initial guess is not feasible.
% First define xbar that is feasible with respect to the equality
% constraints.
if (eq_infeasible)
if (rank(Aeq) < n_eq)
error('qpng: Equality constraint matrix must be full row rank')
end
xbar = pinv(Aeq) * beq;
else
xbar = x0;
end
% Check if xbar is feasible with respect to the inequality
% constraints also.
if (n_in > 0)
res = Ain * xbar - bin;
if any(res > 0)
% xbar is not feasible with respect to the inequality
% constraints. Compute a step in the null space of the
% equality constraints, by solving a QP. If the slack is
% small, we have a feasible initial guess. Otherwise, the
% problem is infeasible.
if (n_eq > 0)
Z = null(Aeq);
if (isempty(Z))
% The problem is infeasible because A is square and full
% rank, but xbar is not feasible.
info = 0;
end
end
if info
% Solve an LP with additional slack variables to find
% a feasible starting point.
gamma = eye(n_in);
if (n_eq > 0)
Atmp = [Ain*Z, gamma];
btmp = -res;
else
Atmp = [Ain, gamma];
btmp = bin;
end
ctmp = [zeros(n-n_eq, 1); ones(n_in, 1)];
lb = [-Inf*ones(n-n_eq,1); zeros(n_in,1)];
ub = [];
ctype = repmat ('L', n_in, 1);
[P, dummy, status] = glpk (ctmp, Atmp, btmp, lb, ub, ctype);
if ((status == 180 | status == 181 | status == 151) & all (abs (P(n-n_eq+1:end)) < rtol * (1 + norm (btmp))))
% We found a feasible starting point
if (n_eq > 0)
x0 = xbar + Z*P(1:n-n_eq);
else
x0 = P(1:n);
end
else
% The problem is infeasible
info = 0;
end
end
else
% xbar is feasible. We use it a starting point.
x0 = xbar;
end
else
% xbar is feasible. We use it a starting point.
x0 = xbar;
end
end
if status
% The initial (or computed) guess is feasible.
% We call the solver.
t=cputime;
[x, lambda, iter, status]=qpsolng(H, q, Aeq, beq, Ain, bin, x0);
time=cputime-t;
else
iter = 0;
x = x0;
lambda = [];
time=0;
end
varargout{1}= x;
varargout{2}= 0.5 * x' * H * x + q' * x; %obj
varargout{3}= lambda;
info=struct('status', status, 'solveiter', iter, 'time', time);
varargout{4}=info;
4>
No comments:
Post a Comment
Thank you