Search This Blog

Tuesday, January 03, 2012

R Tutorial



 R Tutorial
0. R Basics
0.1. What is R?
R is a software package especially suitable for data analysis and graphical representation. Functions and results of analysis are all stored as objects, allowing easy function modification and model building. R provides the language, tool, and environment in one convenient package.
It is very flexible and highly customizable. Excellent graphical tools make R an ideal environment for EDA (Exploratory Data Analysis). Since most high level functions are written in R language itself, you can learn the language by studying the function code.
On the other hand, R has a few weaknesses. For example, R is not particularly efficient in handling large data sets. Also, it is rather slow in executing a large number of for loops, compared to compiler languages such as C/C++. Learning curve is somewhat steep compared to "point and click" software.
0.2  Where do I get R?
There are versions for Unix, Windows, and Macintosh. All of them are free, and Windows version is  downloadable at:
 http://cran.us.r-project.org/bin/windows
and follow the download instructions.

0.3 Invoking R
If properly installed, usually R has a shortcut icon on the desktop screen and/or you can find it under Start|Programs|R menu. If not, search and run the executable file rgui.exe by double clicking from the search result window.
To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask whether to save the objects you have created during the session so that they will become available next time you invoke R. Click Cancel this time.

Commands you entered can be easily recalled and modified. Just by hitting the arrow keys in the keyboard, you can navigate through the recently entered commands.
> objects() # list the names of all objects
> rm(data1)    #remove the object named data1 from the current environment
 
1. Graphics: a few examples
In addition to standard plots such as histogram, bar charts, pie charts and so forth, R provides an impressive array of graphical tools. The following series of plots shows a few of the extensive graphical capabilities of R.





Interactive graphics can serve as a great learning tool. Students can quickly grasp the role of outliers and influential points in a simple linear regression by the following example.
 
> library(tcltk)
> demo(tkcanvas)

Effect of kernel choice, sample size and bandwidth can be conveniently illustrated by the following demonstration:
> library(tcltk)
> demo(tkdensity)

 
2. Basic Operations
2.1 Computation
First of all, R can be used as an ordinary calculator. There are a few examples: > 2 + 3 * 5      # Note the order of operations.
> log (10)       # Natural logarithm with base e=2.718282
> 4^2            # 4 raised to the second power
> 3/2            # Division
> sqrt (16)      # Square root
> abs (3-7)      # Absolute value of 3-7
> pi             # The mysterious number
> exp(2)         # exponential function
> 15 %/% 4       # This is the integer divide operation
> # This is a comment line
Assignment operator (<-) stores the value (object) on the right side of (<-) expression in the left side. Once assigned, the object can be used just as an ordinary component of the computation. To find out what the object looks like, simply type its name. Note that R is case sensitive, e.g., object names abc, ABC, Abc are all different.
> x<- log(2.843432) *pi
> x
[1] 3.283001
> sqrt(x)
[1] 1.811905
> floor(x)        # largest integer less than or equal to x (Gauss number)
[1] 3
> ceiling(x)      # smallest integer greater than or equal to x
[1] 4
R can handle complex numbers, too.
> x<-3+2i
> Re(x)           # Real part of the complex number x
[1] 3
> Im(x)           # Imaginary part of x
[1] 2
> y<- -1+1i
> x+y
[1] 2+3i
> x*y
[1] -5+1i
Important note: since there are many built-in functions in R, make sure that the new object names you assign are not already used by the system. A simple way of checking this is to type in the name you want to use. If the system returns an error message telling you that such object is not found, it is safe to use the name. For example, c (for concatenate) is a built-in function used to combine elements so NEVER assign an object to c!
2.2 Vector
R handles vector objects quite easily and intuitively.
> x<-c(1,3,2,10,5)    #create a vector x with 5 components
> x
[1]  1  3  2 10  5
> y<-1:5              #create a vector of consecutive integers
> y
[1] 1 2 3 4 5
> y+2                 #scalar addition
[1] 3 4 5 6 7
> 2*y                 #scalar multiplication
[1]  2  4  6  8 10
> y^2                 #raise each component to the second power
[1]  1  4  9 16 25
> 2^y                 #raise 2 to the first through fifth power
[1]  2  4  8 16 32
> y                   #y itself has not been unchanged
[1] 1 2 3 4 5
> y<-y*2
> y                   #it is now changed
[1]  2  4  6  8 10
More examples of vector arithmetic:
> x<-c(1,3,2,10,5); y<-1:5 #two or more statements are separated by semicolons
> x+y
[1]  2  5  5 14 10
> x*y
[1]  1  6  6 40 25
> x/y
[1] 1.0000000 1.5000000 0.6666667 2.5000000 1.0000000
> x^y
[1]     1     9     8 10000  3125
> sum(x)            #sum of elements in x
[1] 21
> cumsum(x)         #cumulative sum vector
[1]  1  4  6 16 21
> diff(x)           # first difference
[1]  2 -1  8 -5
> diff(x,2)         #second difference
[1] 1 7 3
> max(x)            #maximum
[1] 10
> min(x)            #minimum
[1] 1
Sorting can be done using sort() command:
> x
[1]  1  3  2 10  5
> sort(x)                # increasing order
[1]  1  2  3  5 10
> sort(x, decreasing=T)  # decreasing order
[1] 10  5  3  2  1
Component extraction is a very important part of vector calculation.
> x
[1]  1  3  2 10  5
> length(x)           # number of elements in x
[1] 5
> x[3]                # the third element of x
[1] 2
> x[3:5]              # the third to fifth element of x, inclusive
[1]  2 10  5
> x[-2]               # all except the second element
[1]  1  2 10  5
> x[x>3]              # list of elements in x greater than 3
[1] 10  5
Logical vector can be handy:
> x>3
[1] FALSE FALSE FALSE  TRUE  TRUE
> as.numeric(x>3)     # as.numeric() function coerces logical components to numeric
[1] 0 0 0 1 1
> sum(x>3)            # number of elements in x greater than 3
[1] 2
> (1:length(x))[x<=2] # indices of x whose components are less than or equal to 2
[1] 1 3
> z<-as.logical(c(1,0,0,1)) # numeric to logical vector conversion
> z
[1]  TRUE FALSE FALSE  TRUE
Character vector:
> colors<-c("green", "blue", "orange", "yellow", "red")
> colors
[1] "green"  "blue"   "orange" "yellow" "red"
Individual components can be named and referenced by their names.
> names(x)            # check if any names are attached to x
NULL
> names(x)<-colors    # assign the names using the character vector colors
> names(x)
[1] "green"  "blue"   "orange" "yellow" "red"
> x
 green   blue orange yellow    red
     1      3      2     10      5
> x["green"]          # component reference by its name
green
    1
> names(x)<-NULL      # names can be removed by assigning NULL
> x
[1]  1  3  2 10  5
seq() and rep() provide convenient ways to a construct vectors with a certain pattern.
> seq(10)
 [1]  1  2  3  4  5  6  7  8  9 10
> seq(0,1,length=10)
 [1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444 0.5555556 0.6666667
 [8] 0.7777778 0.8888889 1.0000000
> seq(0,1,by=0.1)
 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> rep(1,3)
[1] 1 1 1
> c(rep(1,3),rep(2,2),rep(-1,4))
[1]  1  1  1  2  2 -1 -1 -1 -1
> rep("Small",3)
[1] "Small" "Small" "Small"
> c(rep("Small",3),rep("Medium",4))
[1] "Small"  "Small"  "Small"  "Medium" "Medium" "Medium" "Medium"
> rep(c("Low","High"),3)
[1] "Low"  "High" "Low"  "High" "Low"  "High"
2.3 Matrices
A matrix refers to a numeric array of rows and columns. One of the easiest ways to create a matrix is to combine vectors of equal length using cbind(), meaning "column bind":
> x
[1]  1  3  2 10  5
> y
[1] 1 2 3 4 5
> m1<-cbind(x,y);m1
      x y
[1,]  1 1
[2,]  3 2
[3,]  2 3
[4,] 10 4
[5,]  5 5
> t(m1)                # transpose of m1
  [,1] [,2] [,3] [,4] [,5]
x    1    3    2   10    5
y    1    2    3    4    5
> m1<-t(cbind(x,y))    # Or you can combine them and assign in one step
> dim(m1)              # 2 by 5 matrix
[1] 2 5
> m1<-rbind(x,y)       # rbind() is for row bind and equivalent to t(cbind()).
Of course you can directly list the elements and specify the matrix:
> m2<-matrix(c(1,3,2,5,-1,2,2,3,9),nrow=3);m2
     [,1] [,2] [,3]
[1,]    1    5    2
[2,]    3   -1    3
[3,]    2    2    9
Note that the elements are used to fill the first column, then the second column and so on. To fill row-wise, we specify byrow=T option:
> m2<-matrix(c(1,3,2,5,-1,2,2,3,9),ncol=3,byrow=T);m2
     [,1] [,2] [,3]
[1,]    1    3    2
[2,]    5   -1    2
[3,]    2    3    9
Extracting the component of a matrix involves one or two indices.
> m2
     [,1] [,2] [,3]
[1,]    1    3    2
[2,]    5   -1    2
[3,]    2    3    9
> m2[2,3]            #element of m2 at the second row, third column
[1] 2
> m2[2,]             #second row
[1]  5 -1  2
> m2[,3]             #third column
[1] 2 2 9
> m2[-1,]            #submatrix of m2 without the first row
     [,1] [,2] [,3]
[1,]    5   -1    2
[2,]    2    3    9
> m2[,-1]            #ditto, sans the first column
     [,1] [,2]
[1,]    3    2
[2,]   -1    2
[3,]    3    9
> m2[-1,-1]          #submatrix of m2 with the first row and column removed
     [,1] [,2]
[1,]   -1    2
[2,]    3    9
Matrix computation is usually done component-wise.
> m1<-matrix(1:4, ncol=2); m2<-matrix(c(10,20,30,40),ncol=2)
> 2*m1                # scalar multiplication
     [,1] [,2]
[1,]    2    6
[2,]    4    8
> m1+m2               # matrix addition
     [,1] [,2]
[1,]   11   33
[2,]   22   44
> m1*m2               # component-wise multiplication
     [,1] [,2]
[1,]   10   90
[2,]   40  160
Note that m1*m2 is NOT the usual matrix multiplication. To do the matrix multiplication, you should use %*% operator instead.
> m1 %*% m2
     [,1] [,2]
[1,]   70  150
[2,]  100  220
> solve(m1)            #inverse matrix of m1
     [,1] [,2]
[1,]   -2  1.5
[2,]    1 -0.5
> solve(m1)%*%m1       #check if it is so
       [,1] [,2]
  [1,]    1    0
  [2,]    0    1
> diag(3)              #diag() is used to construct a k by k identity matrix
     [,1] [,2] [,3]
[1,]    1    0    0
[2,]    0    1    0
[3,]    0    0    1
> diag(c(2,3,3))       #as well as other diagonal matrices
     [,1] [,2] [,3]
[1,]    2    0    0
[2,]    0    3    0
[3,]    0    0    3
Eigenvalues and eigenvectors of a matrix is handled by eigen() function:
> eigen(m2)
$values
[1] 53.722813 -3.722813
$vectors
           [,1]       [,2]
[1,] -0.5657675 -0.9093767
[2,] -0.8245648  0.4159736
2.4 Finding roots: a simple example
A built-in R function uniroot() can be called from a user defined function root.fun() to compute the root of a univariate function and plot the graph of the function at the same time.
 
> y.fun<-function (x) 
{y<-(log(x))^2-x*exp(-x^3)
} > root.fun<- function ()
{      x<-seq(0.2,2,0.01)
        y<-y.fun(x)
        win.graph()
        plot(x,y,type="l")
        abline(h=0)
        r1 <- uniroot(y.fun,lower=0.2,upper=1)$root
        r2 <- uniroot(y.fun,lower=1,upper=2)$root
        cat("Roots : ", round(r1,4), "  ", round(r2,4),"\n")
}
> root.fun()

2.5 Data frame
Data frame is an array consisting of columns of various mode (numeric, character, etc). Small to moderate size data frame can be constructed by data.frame() function. For example, we illustrate how to construct a data frame from the car data*:
 
Make Model Cylinder Weight Mileage Type
Honda Civic V4 2170 33 Sporty
Chevrolet  Beretta V4 2655 26 Compact
Ford Escort V4 2345 33 Small
Eagle Summit V4 2560 33 Small
Volkswagen Jetta V4 2330 26 Small
Buick Le Sabre V6 3325 23 Large
Mitsubishi Galant V4 2745 25 Compact
Dodge Grand Caravan V6 3735 18 Van
Chrysler New Yorker V6 3450 22 Medium
Acura Legend V6 3265 20 Medium
*Source: adapted from a built-in data set fuel.frame. > Make<-c("Honda","Chevrolet","Ford","Eagle","Volkswagen","Buick","Mitsbusihi",
+ "Dodge","Chrysler","Acura")
> Model<-c("Civic","Beretta","Escort","Summit","Jetta","Le Sabre","Galant",
+ "Grand Caravan","New Yorker","Legend")
Note that the plus sign (+) in the above commands are automatically inserted when the carriage return is pressed without completing the list. Save some typing by using rep() command. For example, rep("V4",5) instructs R to repeat V4 five times.
> Cylinder<-c(rep("V4",5),"V6","V4",rep("V6",3))
> Cylinder
 [1] "V4" "V4" "V4" "V4" "V4" "V6" "V4" "V6" "V6" "V6"
> Weight<-c(2170,2655,2345,2560,2330,3325,2745,3735,3450,3265)
> Mileage<-c(33,26,33,33,26,23,25,18,22,20)
> Type<-c("Sporty","Compact",rep("Small",3),"Large","Compact","Van",rep("Medium",2))
Now data.frame() function combines the six vectors into a single data frame.
> Car<-data.frame(Make,Model,Cylinder,Weight,Mileage,Type)
> Car
         Make         Model Cylinder Weight Mileage    Type
1       Honda         Civic       V4   2170      33  Sporty
2   Chevrolet       Beretta       V4   2655      26 Compact
3        Ford        Escort       V4   2345      33   Small
4       Eagle        Summit       V4   2560      33   Small
5  Volkswagen         Jetta       V4   2330      26   Small
6       Buick      Le Sabre       V6   3325      23   Large
7  Mitsbusihi        Galant       V4   2745      25 Compact
8       Dodge Grand Caravan       V6   3735      18     Van
9    Chrysler    New Yorker       V6   3450      22  Medium
10      Acura        Legend       V6   3265      20  Medium
> names(Car)
[1] "Make"     "Model"    "Cylinder" "Weight"   "Mileage"  "Type"
Just as in matrix objects, partial information can be easily extracted from the data frame:
> Car[1,]
   Make Model Cylinder Weight Mileage   Type
1 Honda Civic       V4   2170      33 Sporty
In addition, individual columns can be referenced by their labels:
> Car$Mileage
 [1] 33 26 33 33 26 23 25 18 22 20
> Car[,5]        #equivalent expression, less informative
> mean(Car$Mileage)    #average mileage of the 10 vehicles
[1] 25.9
> min(Car$Weight)
[1] 2170
table() command gives a frequency table:
> table(Car$Type)
Compact   Large  Medium   Small  Sporty     Van
      2       1       2       3       1       1
If the proportion is desired, type the following command instead:
> table(Car$Type)/10
Compact   Large  Medium   Small  Sporty     Van
    0.2     0.1     0.2     0.3     0.1     0.1
Note that the values were divided by 10 because there are that many vehicles in total. If you don't want to count them each time, the following does the trick:
> table(Car$Type)/length(Car$Type)
Cross tabulation is very easy, too:
> table(Car$Make, Car$Type)
             Compact Large Medium Small Sporty Van
  Acura      0       0     1      0     0      0
  Buick      0       1     0      0     0      0
  Chevrolet  1       0     0      0     0      0
  Chrysler   0       0     1      0     0      0
  Dodge      0       0     0      0     0      1
  Eagle      0       0     0      1     0      0
  Ford       0       0     0      1     0      0
  Honda      0       0     0      0     1      0
  Mitsbusihi 1       0     0      0     0      0
  Volkswagen 0       0     0      1     0      0
What if you want to arrange the data set by vehicle weight? order() gets the job done.
> i<-order(Car$Weight);i
 [1]  1  5  3  4  2  7 10  6  9  8
> Car[i,]
         Make         Model Cylinder Weight Mileage    Type
1       Honda         Civic       V4   2170      33  Sporty
5  Volkswagen         Jetta       V4   2330      26   Small
3        Ford        Escort       V4   2345      33   Small
4       Eagle        Summit       V4   2560      33   Small
2   Chevrolet       Beretta       V4   2655      26 Compact
7  Mitsbusihi        Galant       V4   2745      25 Compact
10      Acura        Legend       V6   3265      20  Medium
6       Buick      Le Sabre       V6   3325      23   Large
9    Chrysler    New Yorker       V6   3450      22  Medium
8       Dodge Grand Caravan       V6   3735      18     Van
2.6 Creating/editing data objects
> y
[1] 1 2 3 4 5
If you want to modify the data object, use edit() function and assign it to an object. For example, the following command opens notepad for editing. After editing is done, choose File | Save and Exit from Notepad.
> y<-edit(y)
If you prefer entering the data.frame in a spreadsheet style data editor, the following command invokes the built-in editor with an empty spreadsheet.
> data1<-edit(data.frame())
After entering a few data points, it looks like this:

You can also change the variable name by clicking once on the cell containing it. Doing so opens a dialog box:

When finished, click  in the upper right corner of the dialog box to return to the Data Editor window. Close the Data Editor to return to the R command window (R Console). Check the result by typing:
> data1
 
3. More on R Graphics
Not only R has fancy graphical tools, but also it has all sorts of useful commands that allow users to control almost every aspect of their graphical output to the finest details. 3.1 Histogram
We will use a data set fuel.frame which is based on makes of cars taken from the April 1990 issue of Consumer Reports.
> fuel.frame<-read.table("c:/fuel-frame.txt", header=T, sep=",")
> names(fuel.frame)
[1] "row.names" "Weight"    "Disp."     "Mileage"   "Fuel"      "Type"
> attach(fuel.frame)
attach() allows to reference variables in fuel.frame without the cumbersome fuel.frame$ prefix.
In general, graphic functions are very flexible and intuitive to use. For example, hist() produces a histogram, boxplot() does a boxplot, etc.
> hist(Mileage)
> hist(Mileage, freq=F)    # if probability instead of frequency is desired

Let us look at the Old Faithful geyser data, which is a built-in R data set.
> data(faithful)
> attach(faithful)
> names(faithful)
[1] "eruptions" "waiting"
> hist(eruptions, seq(1.6, 5.2, 0.2), prob=T)
> lines(density(eruptions, bw=0.1))
> rug(eruptions, side=1)

3.2 Boxplot
> boxplot(Weight)                # usual vertical boxplot
> boxplot(Weight, horizontal=T)  # horizontal boxplot
> rug(Weight, side=2)

If you want to get the statistics involved in the boxplots, the following commands show them. In this example, a$stats gives the value of the lower end of the whisker, the first quartile (25th percentile), second quartile (median=50th percentile), third quartile (75th percentile), and the upper end of the whisker.
> a<-boxplot(Weight, plot=F)
> a$stats
       [,1]
[1,] 1845.0
[2,] 2567.5
[3,] 2885.0
[4,] 3242.5
[5,] 3855.0
> a    #gives additional information
> fivenum(Weight)    #directly obtain the five number summary
[1] 1845.0 2567.5 2885.0 3242.5 3855.0
Boxplot is more useful when comparing grouped data. For example, side-by-side boxplots of weights grouped by vehicle types are shown below:
> boxplot(Weight ~Type)
> title("Weight by Vehicle Types")

On-line help is available for the commands:
> help(hist)
> help(boxplot)
3.3 plot()
plot() is a general graphic command with numerous options.
> plot(Weight)
The following command produce a scatterplot with Weight on the x-axis and Mileage on the y-axis.
> plot(Weight, Mileage, main="Weight vs. Mileage")
A fitted straight line is shown in the plot by executing two more commands.
> fit<-lm(Mileage~Weight)
> abline(fit)

3.4 matplot()
matplot() is used to plot two or more vectors of equal length.
> y60<-c(316.27, 316.81, 317.42, 318.87, 319.87, 319.43, 318.01, 315.74, 314.00, 313.68, 314.84, 316.03)
> y70<-c(324.89, 325.82, 326.77, 327.97, 327.91, 327.50, 326.18, 324.53, 322.93, 322.90, 323.85, 324.96)
> y80<-c(337.84, 338.19, 339.91, 340.60, 341.29, 341.00, 339.39, 337.43, 335.72, 335.84, 336.93, 338.04)
> y90<-c(353.50, 354.55, 355.23, 356.04, 357.00, 356.07, 354.67, 352.76, 350.82, 351.04, 352.69, 354.07)
> y97<-c(363.23, 364.06, 364.61, 366.40, 366.84, 365.68, 364.52, 362.57, 360.24, 360.83, 362.49, 364.34)
> CO2<-data.frame(y60, y70, y80, y90, y97)
> row.names(CO2)<-c("Jan", "Feb", "Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec")
> CO2
       y60    y70    y80    y90    y97
Jan 316.27 324.89 337.84 353.50 363.23
Feb 316.81 325.82 338.19 354.55 364.06
Mar 317.42 326.77 339.91 355.23 364.61
Apr 318.87 327.97 340.60 356.04 366.40
May 319.87 327.91 341.29 357.00 366.84
Jun 319.43 327.50 341.00 356.07 365.68
Jul 318.01 326.18 339.39 354.67 364.52
Aug 315.74 324.53 337.43 352.76 362.57
Sep 314.00 322.93 335.72 350.82 360.24
Oct 313.68 322.90 335.84 351.04 360.83
Nov 314.84 323.85 336.93 352.69 362.49
Dec 316.03 324.96 338.04 354.07 364.34
> matplot(CO2)
Note that the observations labeled 1 represents the monthly CO2 levels for 1960, 2 represents those for 1970, and so on. We can enhance the plot by changing the line types and adding axis labels and titles:
> matplot(CO2,axes=F,frame=T,type='b',ylab="")
> #axes=F: initially do not draw axis
> #frame=T: box around the plot is drawn;
> #type=b: both line and character represent a seris;
> #ylab="": No label for y-axis is shown;
> #ylim=c(310,400): Specify the y-axis range
> axis(2) # put numerical annotations at the tickmarks in y-axis;
> axis(1, 1:12, row.names(CO2))
> # use the Monthly names for the tickmarks in x-axis; length is 12;
> title(xlab="Month")    #label for x-axis;
> title(ylab="CO2 (ppm)")#label for y-axis;
> title("Monthly CO2 Concentration \n for 1960, 1970, 1980, 1990 and 1997")
> # two-line title for the matplot

 
4. Plot Options
4.1 Multiple plots in a single graphic window
You can have more than one plot in a graphic window. For example, par(mfrow=c(1,2))allows you to have two plots side by side. par(mfrow=c(2,3)) allows 6 plots to appear on a page (2 rows of 3 plots each). Note that the arrangement remains in effect until you change it. If you want to go back to the one plot per page setting, type  par(mfrow=c(1,1)). 4.2 Adjusting graphical parameters
4.2.1 Labels and title; axis limits
Any plot benefits from clear and concise labels which greatly enhances the readability.
> plot(Fuel, Weight)
If the main title is too long, you can split it into two and adding a subtitle below the horizontal axis label is easy:
> title(main="Title is too long \n so split it into two",sub="subtitle goes here")

By default, when you issue a plot command R inserts variable name(s) if it is available and figures out the range of x axis and y axis by itself. Sometimes you may want to change these:
> plot(Fuel, Weight, ylab="Weight in pounds", ylim=c(1000,6000))
Similarly, you can specify xlab and xlim to change x-axis. If you do not want the default labels to appear, specify xlab=" ", ylab=" ". This give you a plot with no axis labels. Of course you can add the labels after using appropriate statements within title() statement.
> plot(Mileage, Weight, xlab="Miles per gallon", ylab="Weight in pounds", xlim=c(20,30),ylim=c(2000,4000))
> title(main="Weight versus Mileage \n data=fuel.frame;", sub="Figure 4.1")
4.2.2 Types for plots and lines
In a series plot (especially time series plot), type provides useful options:
> par(mfrow=c(2,2))
> plot(Fuel, type="l"); title("lines")
> plot(Fuel, type="b"); title("both")
> plot(Fuel, type="o"); title("overstruck")
> plot(Fuel, type="h"); title("high density")

Also you can specify the line types using lty argument within plot() command:
> plot(Fuel, type="l", lty=1)  #the usual series plot
> plot(Fuel, type="l", lty=2)  #shows dotted line instead. lty can go up to 8.
> plot(Fuel, type="l", lty=1); title(main="Fuel data", sub="lty=1")
> plot(Fuel, type="l", lty=2); title(main="Fuel data", sub="lty=2")
> plot(Fuel, type="l", lty=3); title(main="Fuel data", sub="lty=3")
> plot(Fuel, type="l", lty=4); title(main="Fuel data", sub="lty=4")

Note that we can control the thickness of the lines by lwd=1 (default) through lwd=5 (thickest).
4.3 Colors and characters
You can change the color by specifying
> plot(Fuel, col=2)
which shows a plot with different color. The default is col=1. The actual color assignment depends on the system you are using. You may want to experiment with different numbers. Of course you can specify the col option together with other options such as type or lty. pch option allows you to choose alternative plotting characters when making a points-type plot. For example, the command
> plot(Fuel, pch="*")    # plots with * characters
> plot(Fuel, pch="M")    # plots with M.
4.4 Controlling axis line
bty ="n"; No box is drawn around the plot, although the x and y axes are still drawn.
bty="o"; The default box type; draws a four-sided box around the plot.
bty="c"; Draws a three-sided box around the plot in the shape of an uppercase "C."
bty="l"; Draws a two-sided box around the plot in the shape of an uppercase "L."
bty="7"; Draws a two-sided box around the plot in the shape of a square numeral "7."
> par(mfrow = c(2,2))
> plot(Fuel)
> plot(Fuel, bty="l")
> plot(Fuel, bty="7")
> plot(Fuel, bty="c")
4.5 Controlling tick marks
tck parameter is used to control the length of tick marks. tck=1 draws grid lines. Any positive value between 0 and 1 draws inward tick marks for each axis. Also with some more work you can have tick marks of different lengths, as the following example shows.
> plot(Fuel, main="Default")
> plot(Fuel, tck=0.05, main="tck=0.05")
> plot(Fuel, tck=1, main="tck=1")
> plot(Fuel, axes=F, main="Different tick marks for each axis")
> #axes=F suppresses the drawing of axis
> axis(1)# draws x-axis.
> axis(2, tck=1, lty=2) # draws y-axis with horizontal grid of dotted line
> box()# draws box around the remaining sides.
4.6 Legend
legend() is useful when adding more information to the existing plot.
In the following example, the legend() command says
(1) put a box whose upper left corner coordinates are x=30 and y=3.5;
(2) write the two texts Fuel and Smoothed Fuel within the box together with corresponding symbols described in pch and lty arguments.
>par(mfrow = c(1,1))
>plot(Fuel)
>lines(lowess(Fuel))
>legend(30,3.5, c("Fuel","Smoothed Fuel"), pch="* ", lty=c(0,1))

If you want to keep the legend box from appearing, add bty="n" to the legend command.
4.7 Putting text to the plot; controlling the text size
mtext() allows you to put texts to the four sides of the plot. Starting from the bottom (side=1), it goes clockwise to side 4. The plot command in the example suppresses axis labels and the plot itself. It just gives the frame. Also shown is the use of cex (character expansion) argument which controls the relative size of the text characters. By default, cex is set to 1, so graphics text and symbols appear in the default font size. With cex=2, text appears at twice the default font size. text() statement allows precise positioning of the text at any specified point. First text statement puts the text within the quotation marks centered at x=15, y=4.3. By using optional argument adj, you can align to the left (adj=0) such that the specified coordinates are the starting point of the text.
> plot(Fuel, xlab=" ", ylab=" ", type="n")
> mtext("Text on side 1, cex=1", side=1,cex=1)
> mtext("Text on side 2, cex=1.2", side=2,cex=1.2)
> mtext("Text on side 3, cex=1.5", side=3,cex=1.5)
> mtext("Text on side 4, cex=2", side=4,cex=2)
> text(15, 4.3, "text(15, 4.3)")
> text(35, 3.5, adj=0, "text(35, 3.5), left aligned")
> text(40, 5, adj=1, "text(40, 5), right aligned")

4.8 Adding symbols to plots
abline() can be used to draw a straight line to a plot.
abline(a,b) a=y-intercept, b=slope.
abline(h=30) draws a horizontal line at y=30.
abline(v=12) draws a vertical line at x=12.
4.9 Adding arrow and line segment
> plot(Mileage, Fuel)
> arrows(23,3.5,24.5,3.9)
> segments(31.96713,3.115541, 29.97309,3.309592)
> title("arrow and segment")
> text(23,3.4,"Chrysler Le Baron V6", cex=0.7)

4.10 Identifying plotted points
While examining a plot, identifying a data point such as possible outliers can be achieved using identify() function.
> plot(Fuel)
> identify(Fuel, n=3)
After pressing return, R waits for you to identify (n=3) points with the mouse. Moving the mouse cursor over the graphics window and click on a data point. Then the observation number appears next to the point, thus making the point identifiable.
4.11 Managing graphics windows
Normally high level graphic commands (hist(), plot(), boxplot(), ...) produce a plot which replaces the previous one. To avoid this, use win.graph() to open a separate graphic window. Even if more than one graphics windows are open, only one window is active, i.e., as long as you don't change the active window, subsequent plotting commands will show the plot in that particular window. dev.cur() gives the current active window, dev.list() lists all available graphics windows, dev.set() changes the active window, dev.off() closes the current graphic window, and graphics.off() closes all the open graphics windows at once.  The following examples assume that currently no graphic window is open.
> for (i in 1:3) win.graph()    #open three graphic windows
> dev.list()
windows windows windows
      2       3       4
> dev.cur()
windows
      4
> dev.set(3)        #change the current window to window 3
windows
      3
> dev.cur()         #check it
windows
      3
> dev.off()         #close the current window and window 4 is active
windows
      4
> dev.list()
windows windows
      2       4
> graphics.off()    # now close all three
> dev.list()
NULL
 
5. Statistical Analysis
5.1 Descriptive statistics
summary() returns five number summary plus mean for numeric vector and returns the frequencies for categorical vector. > fuel.frame<-read.table("c:/fuel_frame.txt", header=T, sep=",")
> names(fuel.frame)
[1] "row.names" "Weight"    "Disp."     "Mileage"   "Fuel"      "Type"
> attach(fuel.frame)
> summary(Mileage)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  18.00   21.00   23.00   24.58   27.00   37.00
> summary(fuel.frame)
               row.names      Weight                   Disp.
 Acura.Legend.V6    : 1   Min.   :1845             Min.   :  0.73
 Audi.80.4          : 1   1st Qu.:2571             1st Qu.:113.75
 Buick.Century.4    : 1   Median :2885             Median :144.50
 Buick.Le.Sabre.V6  : 1   Mean   :2901             Mean   :136.92
 Buick.Skylark.4    : 1   3rd Qu.:3231             3rd Qu.:180.00
 Chevrolet.Beretta.4: 1   Max.   :3855             Max.   :305.00
 (Other)            :54
    Mileage                    Fuel                     Type
 Min.   :18.00            Min.   :2.703            Compact:15
 1st Qu.:21.00            1st Qu.:3.704            Large  : 3
 Median :23.00            Median :4.348            Medium :13
 Mean   :24.58            Mean   :4.210            Small  :13
 3rd Qu.:27.00            3rd Qu.:4.762            Sporty : 9
 Max.   :37.00            Max.   :5.556            Van    : 7
var() returns the sample variance, sd() the sample standard deviation, and cor() the sample correlation coefficient between two vectors:
> var(Mileage)
[1] 22.95904
> sd(Mileage)
[1] 4.791559
> cor(Mileage,Weight)
[1] -0.8478541
5.2 Empirical distribution function
> library(stepfun)    # call a library of functions
> F20<-rnorm(20)      # generate a normal random sample of size 20
> plot.ecdf(F20,main="Empirical distribution function")

5.3 One sample and two sample t tests
Recall the CO2 data (CO2 concentration in the atmosphere). The following command performs a one-sample t-test whether the average CO2 level for the year 1960 is 320 ppm. By default, it does a two-sided test and extremely small p-value indicates that the null hypothesis is rejected for any reasonable choice of alpha.
> t.test(CO2$y60, mu=320)
        One Sample t-test
data:  CO2$y60
t = -5.5183, df = 11, p-value = 0.0001812
alternative hypothesis: true mean is not equal to 320
95 percent confidence interval:
 315.4502 318.0448
sample estimates:
mean of x
 316.7475
Now we perform a two-sample independent t-test of equal mean for the CO2 level of 1960 and 1970. We assume that the variances for the two populations are equal. The average concentrations are significantly different, just as the test shows.
> t.test(CO2$y60, CO2$y70,var.equal=T)
        Two Sample t-test
data:  CO2$y60 and CO2$y70
t = -11.1522, df = 22, p-value = 1.602e-10
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -10.40088  -7.13912
sample estimates:
mean of x mean of y
 316.7475  325.5175
Paired t-test is also available. All you have to do is to include paired=T within t.test() argument.
5.4 Checking normality
Quite a few statistical tests are based on the normality of the underlying population. Here we illustrate normal plot and Kolmogorov-Smirnov test to check the normality assumption.
> #generate 500 observations from uniform (0,1) distribution
> F500<-runif(500);a<-c(mean(F500),sd(F500))
> qqnorm(F500)    #normal probability plot
> qqline(F500)    #ideal sample will fall near the straight line

Obviously the curve is far from the straight line so we strongly suspect the normality (if we didn't know that the generated data came from uniform). We formally test the normality by performing Kolmogorov-Smirnov test, comparing the empirical distribution of F500 to a comparable normal distribution with the mean and standard deviation same as that of F500.
> ks.test(F500, "pnorm", mean=a[1], sd=a[2])
        One-sample Kolmogorov-Smirnov test
data:  F500
D = 0.0655, p-value = 0.02742
alternative hypothesis: two.sided
5.5 Analysis of variance
ANOVA is an extension of a two-sample t test, testing the equality of means of more than two groups. In the example below, we use aov() function to test the equality of average weight per vehicle type.
> a<-aov(Weight~Type)
> summary(a)
            Df   Sum Sq  Mean Sq F value    Pr(>F)
Type         5 11161777  2232355  36.035 4.855e-16 ***
Residuals   54  3345331    61951
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
> boxplot(Weight~Type) #side-by-side boxplot
5.6 Linear regression model
lm() fits a linear regression model. summary() returns rich information for the fit.
> attach(fuel.frame)
> names(fuel.frame)
[1] "row.names" "Weight"    "Disp."     "Mileage"   "Fuel"      "Type"
> fit1<-lm(Mileage~Weight+Disp.)
> fit1      #gives model specification and regression coefficients
Call:
lm(formula = Mileage ~ Weight + Disp.)
Coefficients:
(Intercept)       Weight        Disp.
  44.379702    -0.006044    -0.016540
> summary(fit1)    #more information is available
Call:
lm(formula = Mileage ~ Weight + Disp.)
Residuals:
    Min      1Q  Median      3Q     Max
-4.5726 -1.5814 -0.2569  1.8499  4.6783
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.379702   2.654526  16.719  < 2e-16 ***
Weight      -0.006044   0.001188  -5.088 4.23e-06 ***
Disp.       -0.016540   0.007641  -2.165   0.0346 *
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 2.485 on 57 degrees of freedom
Multiple R-Squared: 0.7402,     Adjusted R-squared: 0.7311
F-statistic: 81.21 on 2 and 57 DF,  p-value: < 2.2e-16
> names(fit1)
 [1] "coefficients"  "residuals"     "effects"       "rank"
 [5] "fitted.values" "assign"        "qr"            "df.residual"
 [9] "xlevels"       "call"          "terms"         "model"
> plot(fit1$fitted.values,fit1$residuals) #residual plot
If no intercept term is desired, use the following command:
> fit2<-lm(Mileage~ -1+Weight+Disp.)
Usual diagnostic plots can be obtained by reguesting plot(fit1):
> par(mfrow=c(2,2))
> plot(fit1)

 
6. Miscellanies 
6.1 Data import/export
Small to moderate size data sets can be easily handled using tools presented so far. However, quite often we have a garden variety of data sources from data handling programs. By far the easiest way to import and export the data in R is using text files. Save the data in plain text format which may be imported to a different software. That way, you can easily view the data using any of the capable text editor even when the original software that produced the data is no longer available. write.table() outputs the specified data frame to a file. A blank space is used to separate columns when sep=" " is specified within its argument. Other popular choices include comma (sep=","), and tab (sep="\t") .
> CO2    # data frame
> write.table(CO2, file="c:/CO2.txt", sep=" ")

On the other hand, read.table() reads in an external text file and creates a data frame. For example, if the first line of the text data file file.dat consists of variable names, the following command will do the job:
> data1<-read.table("c:/file.dat", header=TRUE)
getwd() returns the current working directory and setwd() changes it.
> getwd()
[1] "C:\\Program Files\\R\\rw1070"
> setwd("c:/")    # set the root directory as the working directory
> getwd()
[1] "c:\\"
> read.table(file="CO2.txt")
> # now pathname is not required to read data files in the root directory
6.2 Saving graphical output

Right clicking anywhere inside the active graphics window shows a context sensitive menu, allowing either saving the plot as metafile (EMF) or postscript format (PS). On the other hand, Copy as metafile or Copy as bitmap (BMP) puts the information in the clipboard, a temporary memory area used by Windows. In the latter, you need to immediately paste it in some applications which understand the graphics format, e.g., MS Word. More graphical formats are available from the main menu. While the graphic window is active, click File| Save As from the menu and it lists six file formats (metafile, postscript, PDF, PNG, BMP, and JPG at three quality levels) in total so you have plenty of choices.
Some comments on the choice of graphic formats are in order. In general metafile format retains graphic quality even when it is resized in the application. On the other hand, JPG is a very popular choice on the Internet and file size is usually much smaller than metafile. Except for rare circumstances, I would not recommend BMP file format because it is usually very large and shows very poor picture quality when resized. Postscript file format is useful when including the graphic file in another postscript file or when postscript printer is available. Picture quality does not deteriorate when resized, and it is the default file format to be included in TeX documents.
6.3 Missing values
NA (Not Applicable) is used to denote missing values. Since many functions returns NA if missing values are present, we illustrate how to handle them.
> x                        #contains a missing value
[1]  1  2  3  4  5 NA
> mean(x)                  #doesn't work
[1] NA
> is.na(x)                 #returns a logical vector
[1] FALSE FALSE FALSE FALSE FALSE  TRUE
> sum(is.na(x))            #number of NA's in the vector
[1] 1
> x1<-x[!is.na(x)];x1      #retain only non-missing cases
[1] 1 2 3 4 5
> a<-mean(x[!is.na(x)]);a  #compute the average value of the non-missing cases
[1] 3
> x2<-x
> x2[is.na(x)]<-a;x2       #impute the missing by the average value
[1] 1 2 3 4 5 3
The following example shows how to select those listwise nonmissing cases.
> data2
  var1 var2 var3
1    1  2.3   aa
2    4  3.2
3    3  5.4   bc
4   NA  2.7   ed
5    3  4.1   dd
> a1<-!is.na(data2$var1);a1    #TRUE if nonmissing for var1
[1]  TRUE  TRUE  TRUE FALSE  TRUE
> a2<-!is.na(data2$var2);a2
[1] TRUE TRUE TRUE TRUE TRUE
> a3<-!is.na(data2$var3);a3
[1]  TRUE FALSE  TRUE  TRUE  TRUE
> data3<-data2[a1*a2*a3==1,]
> #select those rows if all of the elements are nonmissing.
> data3
  var1 var2 var3
1    1  2.3   aa
3    3  5.4   bc
5    3  4.1   dd
6.4 Getting help
By default, R has a couple of excellent manuals in PDF format. "An Introduction to R" is almost a required reading to begin using R. To access the manual, click Help | Manuals and the list of available documents will be shown. Also use help() to get command-specific information.
> help(read.table)
 
Dong-Yun Kim, dhkim@ilstu.edu
Page location: http://math.illinoisstate.edu/dhkim/rstuff/rtutor.html
MAT 356 Homepage

How to Write Functions in R


How to Write Functions in R

1. Open a text editor (for example, TextPad, Crimson Editor, XEmacs)

2. Write an R function

For example,

square <- function(number)
{
answer <- number * number
return(answer)
}

square is the name of the function.
function is the R function that creates functions.
number is the parameter (name of the value) passed to the square function.
{ delimits the beginning of the function
} delimits the end of the function
return is the R function that specifies what the function returns,
in this example, the value of answer

3. Save the file (by convention with an .R extension). In this example, the file name is “example.R”.

For this exercise, we’re going to put in some errors in our function. Color coding is as follows: red for what the user types; blue for response by R:

square <- function(number)
{
answer <- number * nmber
return(number
}

3. Start R

4. Use the function source to load your function into your R workspace:

> source(example.R)

Note that the file name is in quotes and should include either the absolute path, or the path relative to the location of your R workspace.

5. R will indicate any “syntax” errors at this point and the line number where they are located. For example,

Error in parse(file, n, text, prompt) : syntax error on line 5

6. Go back to your text editor and fix the error(s), resave the file, and reread (source) the function in R.

7. When you get a prompt after “sourcing” your file, then you can try using the function:

> square(5)

8. At this point, you may get a “runtime” error. For example,

Error in square(5) : Object "nmber" not found

9. Once again, go back to your text editor and fix the error(s), resave the file, and reread (source) the function in R.

10. The last kind of error you can get, is where the function runs, but gives the wrong answer. For example,

> square(5)
[1] 5

These are often the hardest errors to find because R can’t help you. You haven’t done something that R doesn’t understand, rather you’ve made an error telling R what to do. R is doing exactly what you asked, but it’s not what you meant. Oftentimes to find this error, you need to go through the function line by line, verifying the result of each line until you find your error. You can do this either by feeding each line to the R workspace. Or by writing the result of each line either to the workspace or to a file using the cat() function.

11. Finally, after correcting all these errors, your function runs properly:

> square(5)
[1] 25