#
1. Draw the surface plot of bivariate gumbel copula with parameter
#
equals to 1.5 and bivariate normal copula with parameter equals to
0.7.
surface=function()
{
library("copula");
gc=gumbelCopula(1.5,
dim=2)
persp(gc,
dcopula, col="red")
nc=normalCopula(0.7)
persp(nc,
dcopula, col="blue")
}
=============================
#
2. Draw the contour plot of the density and cdf of bivariate gumbel
#copula
with with parameter 1.4 and marginals N(3,4) and T(3).
cont=function()
{
library("copula");
#Density
contour Plot
density
= mvdc(copula = archmCopula(family = "gumbel", param =
1.4), margins = c("norm", "t"), paramMargins =
list(list(mean = 0, sd = 1), list(df=3, ncp = 3)))
print(density)
contour(density,
dmvdc, xlim = c(-2, 8), ylim = c(-2, 10)) ;
#
CDF contour Plot
cdf=mvdc(copula
= archmCopula(family = "gumbel", param = 1.4), margins =
c("norm", "t"), paramMargins = list(list(mean =
0, sd = 1), list(df=3, ncp = 3)))
contour(cdf,
pmvdc, xlim = c(-2, 20), ylim = c(-2, 20))
}
==============
#
3. Consider the monthly log returns of Boeing (BA), Abbott Labs
(ABT),
#
Mo- torola (MOT) and General Motors (GM) from January 1998 to
December
#
2007. The log returns are in percentages.
#
(a) Calculate the correlation co-efficient for MOT and GM.
#
Generate 500 random number from gaussian copula taking parameter as
#
this correlation coefficient. Draw contour plot of the empirical
#
copula based on the generated sample and superimpose the empirical
#
copula based on the data for MOT and GM.
corltn
= function()
{
#######
--------- Lybraries ------------#####
library("copula")
library("fCopulae")
data_set=read.table("m-ba4c9807.txt",header=TRUE);
BA=data_set[1];
ABT=data_set[2];
MOT=data_set[3];
GM=data_set[4];
MOTGM=data_set[3:4];
BA=t(BA);
ABT=t(ABT);
MOT=t(MOT);
GM=t(GM);
#
4 figures arranged in 2 rows and 2 columns
attach(mtcars)
par(mfrow=c(2,2))
rr=cor(t(MOT),t(GM),
use = "everything", method = "pearson")
nc
= normalCopula(-0.1231763)
r
= rcopula(nc, 500)
#
Probablity Empirical Copula:
empg=pempiricalCopula(r,
N = 10)
contour(empg,
pcopula, main="Probability Empirical contour plot of random
gaussian data")
#par(new=TRUE)
empd=pempiricalCopula(MOTGM,
N = 10)
contour(empd,
pcopula, main="Probability Empirical contour plot of MOT and GM
data")
#
Density Empirical Copula:
empg=dempiricalCopula(r,
N = 10)
contour(empg,
dcopula, main="Density Empirical contour plot of random gaussian
data")
#par(new=TRUE)
empd=dempiricalCopula(MOTGM,
N = 10)
contour(empd,
dcopula, main="Density Empirical contour plot of MOT and GM
data")
}
===============================
******************
END ******************
No comments:
Post a Comment
Thank you