Search This Blog

Wednesday, April 18, 2012

R: FORECASTING AND TIME SERIES # 2




# Example 2.1.
# Page 30
white.noise <- rnorm(150,0,1)
plot(white.noise,ylab="Simulated white noise process",xlab="Time",type="o")

# Example 2.2.
# Uses white noise process from Example 2.1.
# Page 33
random.walk <- white.noise*0
for(i in 1:length(white.noise)){
      random.walk[i]<-sum(white.noise[1:i])
      }
plot(random.walk,ylab="Simulated random walk process",xlab="Time",type="o")

# Example 2.3.
# Uses white noise process from Example 2.1.
# Page 36
moving.average <- filter(x = white.noise, filter = rep(x = 1/3, times = 3), method = "convolution", sides = 1)
plot(moving.average,ylab="Simulated moving average process",xlab="Time",type="o")

# Example 2.4.
# Autoregressive model simulation
# Page 37
autoregressive <- arima.sim(model = list(ar = c(0.75)), n = 150, rand.gen = rnorm, sd = 1)
plot(autoregressive,ylab="Simulated autoregressive process",xlab="Time",type="o")

# Example 2.5.
# Sinusoidal process
# Page 38
mean.function <- 2*sin(2*pi*1:156/52+0.6*pi)
w <- rnorm(156,0,1)
par(mfrow=c(2,2))
plot(mean.function,ylab="",xlab="Time",type="l")
plot(mean.function+w,ylab="",xlab="Time",type="o")
plot(mean.function+2*w,ylab="",xlab="Time",type="o")
plot(mean.function+4*w,ylab="",xlab="Time",type="o")

No comments:

Post a Comment

Thank you