Search This Blog

Tuesday, March 20, 2012

R: sbgcop.mcmc {sbgcop}

sbgcop.mcmc {sbgcop}

Semiparametric Bayesian Gaussian copula estimation and imputation
Package: 
sbgcop
Version: 
0.975

Description

sbgcop.mcmc is used to semiparametrically estimate the parameters of a Gaussian copula. It can be used for posterior inference on the copula parameters, and for imputation of missing values in a matrix of ordinal and/or continuous values.

Usage

sbgcop.mcmc(Y, S0 = diag(dim(Y)[2]), n0 = dim(Y)[2] + 2, nsamp = 100,
  odens = max(1, round(nsamp/1000)), 
 impute=any(is.na(Y)),
 plugin.threshold=100,
 plugin.marginal=(apply(Y,2,function(x){ length(unique(x))})>plugin.threshold),
seed = 1, verb = TRUE)

Arguments

Y
an n x p matrix. Missing values are allowed.
S0
a p x p positive definite matrix
n0
a positive integer
nsamp
number of iterations of the Markov chain.
odens
output density: number of iterations between saved samples.
impute
save posterior predictive values of missing data(TRUE/FALSE)?
plugin.threshold
if the number of unique values of a variable exceeds this integer, then plug-in the empirical distribution as the marginal.
plugin.marginal
a logical of length p. Gives finer control over which margins to use the empirical distribution for.
seed
an integer for the random seed
verb
print progress of MCMC(TRUE/FALSE)?

Details

This function produces MCMC samples from the posterior distribution of a correlation matrix, using a scaled inverse-Wishart prior distribution and an extended rank likelihood. It also provides imputation for missing values in a multivariate dataset.

Values

An object of class psgc containing the following components:
C.psamp
an array of size p x p x nsamp/odens, consisting of posterior samples of the correlation matrix.
Y.pmean
the original datamatrix with imputed values replacing missing data
Y.impute
an array of size n x p x nsamp/odens, consisting of copies of the original data matrix, with posterior samples of missing values included.
LPC
the log-probability of the latent variables at each saved sample. Used for diagnostic purposes.

Examples

fit<-sbgcop.mcmc(swiss)
summary(fit)
plot(fit)

Author(s)

Peter Hoff
Documentation reproduced from package sbgcop, version 0.975. License: GPL (>= 2)

No comments:

Post a Comment

Thank you