sbgcop.mcmc {sbgcop}
Semiparametric Bayesian Gaussian copula estimation and imputation
Description
sbgcop.mcmc
is used to semiparametrically estimate the parameters of a Gaussian
copula. It can be used for posterior inference on the copula parameters,
and for imputation of missing values in a matrix of ordinal and/or
continuous values.
Usage
sbgcop.mcmc(Y, S0 = diag(dim(Y)[2]), n0 = dim(Y)[2] + 2, nsamp = 100, odens = max(1, round(nsamp/1000)), impute=any(is.na(Y)), plugin.threshold=100, plugin.marginal=(apply(Y,2,function(x){ length(unique(x))})>plugin.threshold), seed = 1, verb = TRUE)
Arguments
- Y
- an n x p matrix. Missing values are allowed.
- S0
- a p x p positive definite matrix
- n0
- a positive integer
- nsamp
- number of iterations of the Markov chain.
- odens
- output density: number of iterations between saved samples.
- impute
- save posterior predictive values of missing data(TRUE/FALSE)?
- plugin.threshold
- if the number of unique values of a variable exceeds this integer, then plug-in the empirical distribution as the marginal.
- plugin.marginal
- a logical of length p. Gives finer control over which margins to use the empirical distribution for.
- seed
- an integer for the random seed
- verb
- print progress of MCMC(TRUE/FALSE)?
Details
This function produces MCMC samples from the posterior distribution of a correlation matrix, using a scaled inverse-Wishart prior distribution and an extended rank likelihood. It also provides imputation for missing values in a multivariate dataset.Values
An object of classpsgc
containing the following components:- C.psamp
- an array of size p x p x
nsamp/odens
, consisting of posterior samples of the correlation matrix. - Y.pmean
- the original datamatrix with imputed values replacing missing data
- Y.impute
- an array of size n x p x
nsamp/odens
, consisting of copies of the original data matrix, with posterior samples of missing values included. - LPC
- the log-probability of the latent variables at each saved sample. Used for diagnostic purposes.
References
http://www.stat.washington.edu/hoff/
Documentation reproduced from package sbgcop, version 0.975. License: GPL (>= 2)
No comments:
Post a Comment
Thank you