| GevDistribution {fExtremes} | R Documentation |
Generalized Extreme Value Distribution
Description
Density, distribution function, quantile function, random number generation, and true moments for the GEV including the Frechet, Gumbel, and Weibull distributions.The GEV distribution functions are:
dgev | density of the GEV distribution, |
pgev | probability function of the GEV distribution, |
qgev | quantile function of the GEV distribution, |
rgev | random variates from the GEV distribution, |
gevMoments | computes true mean and variance, |
gevSlider | displays density or rvs from a GEV. |
Usage
dgev(x, xi = 1, mu = 0, beta = 1, log = FALSE)
pgev(q, xi = 1, mu = 0, beta = 1, lower.tail = TRUE)
qgev(p, xi = 1, mu = 0, beta = 1, lower.tail = TRUE)
rgev(n, xi = 1, mu = 0, beta = 1)
gevMoments(xi = 0, mu = 0, beta = 1)
gevSlider(method = c("dist", "rvs"))
Arguments
log |
a logical, if TRUE, the log density is returned.
|
lower.tail |
a logical, if TRUE, the default, then
probabilities are P[X <= x], otherwise, P[X > x].
|
method |
a character sgtring denoting what should be displayed. Either
the density and "dist" or random variates "rvs".
|
n |
the number of observations.
|
p |
a numeric vector of probabilities.
[hillPlot] - probability required when option quantile is
chosen.
|
q |
a numeric vector of quantiles.
|
x |
a numeric vector of quantiles.
|
xi, mu, beta |
xi is the shape parameter, mu the location parameter,
and beta is the scale parameter. The default values are
xi=1, mu=0, and beta=1. Note, if xi=0
the distribution is of type Gumbel.
|
Value
d* returns the density, p* returns the probability, q* returns the quantiles, and r* generates random variates. All values are numeric vectors.
Author(s)
Alec Stephenson for R'sevd and evir package, and Diethelm Wuertz for this R-port.
References
Coles S. (2001); Introduction to Statistical Modelling of Extreme Values, Springer.Embrechts, P., Klueppelberg, C., Mikosch, T. (1997); Modelling Extremal Events, Springer.
Examples
## rgev -
# Create and plot 1000 Weibull distributed rdv:
r = rgev(n = 1000, xi = -1)
plot(r, type = "l", col = "steelblue", main = "Weibull Series")
grid()
## dgev -
# Plot empirical density and compare with true density:
hist(r[abs(r)<10], nclass = 25, freq = FALSE, xlab = "r",
xlim = c(-5,5), ylim = c(0,1.1), main = "Density")
box()
x = seq(-5, 5, by = 0.01)
lines(x, dgev(x, xi = -1), col = "steelblue")
## pgev -
# Plot df and compare with true df:
plot(sort(r), (1:length(r)/length(r)),
xlim = c(-3, 6), ylim = c(0, 1.1),
cex = 0.5, ylab = "p", xlab = "q", main = "Probability")
grid()
q = seq(-5, 5, by = 0.1)
lines(q, pgev(q, xi = -1), col = "steelblue")
## qgev -
# Compute quantiles, a test:
qgev(pgev(seq(-5, 5, 0.25), xi = -1), xi = -1)
## gevMoments:
# Returns true mean and variance:
gevMoments(xi = 0, mu = 0, beta = 1)
## Slider:
# gevSlider(method = "dist")
# gevSlider(method = "rvs")
[Package fExtremes version 2100.77 Index]
No comments:
Post a Comment
Thank you